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Anharmonic Rovibrational Numbers and Densities of States for HO,, H,CO, and H,0,"
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Anharmonic vibrational numbers and densities of states are calculated by quantum-corrected Monte Carlo
integration of phase space volumes on ab initio potential energy surfaces for HO,, H,CO, and H,O,. Rotational
dependences of the anharmonicity are also determined for HyCO. The total numbers of states W(E,J = 0) are
approximated in analytical form. Using Whitten—Rabinovitch expressions as a reference, anharmonicity factors
Fann(E,J = 0) for the densities of states are also given analytically. The results are used as a benchmark for
comparisons with an empirical anharmonicity model (Troe, J. Chem. Phys. 1995, 190, 381). It was found
that some modifications of this model are necessary for applications at high energies. The improved empirical
model is intended to serve for estimates of anharmonic densities of states of larger molecular systems at high

energies.

1. Introduction

Anharmonic rovibrational densities of states p(E,J) of mol-
ecules, at the energy E and the total angular momentum with
quantum number J, are important quantities in statistical theories
of uni- and bimolecular rate processes.'? If accurate ab initio
potential energy surfaces are available, in principle exact
quantum calculations of the rovibrational energy levels (see,
e.g., ref 3) provide an accurate access to p(E,J) both in the ranges
of stable and of dissociative states. In practice, however, ab initio
potentials exist as yet only for a restricted number of small
molecular systems and their limited accuracy often requires
empirical corrections on the basis of spectroscopic data.* In
addition, the large computational effort to obtain accurate p(E,J)
in practical applications appears exaggerated when other relevant
factors contributing to the rates are less well characterized. In
this situation simpler methods appear desirable which at least
provide semiquantitative results for p(E,J).

Harmonic vibrational densities of states pyi,n(E) are deter-
mined routinely by Beyer—Swinehart state counting algorithms>~’
or, in smoothed form, by Whitten—Rabinovitch approximations.'?®
In the present work we represent anharmonicity contributions
relative to these results, i.e., relative to the Whitten—Rabinovitch
expressions. We emphasize, however, that py,n(E) determined
in this way already contains some anharmonicity when the input
parameters are experimental fundamental (in contrast to har-
monic) frequencies. Anharmonicity contributions

F, anh,p(E) = Puin(E)/ Pyinn(E) (1.1)

in the anharmonic vibrational density of states py,(E) in the
past have been proposed in a number of ways which we cannot
review at this place (for summaries, see, e.g., refs 1 and 2).
However, there is no consensus about which technique in
practical applications is most realistic. There appears to be even
no simple answer to the question whether F, ,(E) increases or
decreases with increasing molecular complexity. It is clear that,
at a given energy E, the energy per oscillator decreases with
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increasing molecular size such that the anharmonicity contribu-
tion of each oscillator decreases, but the cumulative effect from
large numbers of oscillators may compensate for this effect.
One comes to the conclusion that there is some residual
anharmonicity, because anharmonicity effects are also observ-
able in the internal energies and heat capacities of crystals at
increasing temperatures.

In order to finally study the effects of increasing molecular
complexity on Fun(E), we come back to the empiricial
anharmonicity model proposed in ref 9. This approach in a
simplified and empiricial way accounts for Morse anharmo-
nicities of stretching vibrations and stretch—bend couplings of
bending vibrations. Including only adjacent stretches in the latter
couplings, one neglects a large number of other couplings, such
as included, e.g., in Dunham expansions of energy terms.
However, for molecules of at least moderate complexity, this
sacrifice allows one to obtain simple estimates of anharmonicity
contributions to p(E,J). Nevertheless, the method requires testing
by more accurate calculations from systems whose ab initio
potentials are available. This is the issue of the present article.
Besides, the account for rotational contributions in terms of
rotational factors

P(E, ]) = p(EVF o (E. ) (1.2)

such as expressed in ref 10—12, needs to be checked as well.

Our empirical method, such as described in refs 4, 9 and 13,
has been tested for only few systems before. It seemed to provide
good results for total numbers of vibrational states W(E,J = 0)
of NO,, see refs 9 and 14, and for HOCI, see ref 15, while
problems were noted for Hi*. More elaborate comparisons
between the empirical and ab initio results have begun to be
made for the HO, system in refs 4 and 13. It was observed that
the empirical method in its simplest form overestimates Fyp o(E)
at large energies but that this failure could be corrected for by
modifications of the method. For this reason, further studies
appear necessary. We provide these in the present work
comparing empirical calculations of anharmonic vibrational
densities of states with ab initio calculations, at first for HO,
and then for the formaldehyde and hydrogen peroxide systems.
In these cases sufficiently accurate and complete potential energy
surfaces are available such that a reliable comparison can be
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made. The analysis shows that the individual complexities of
the potentials can be considerable and that one cannot hope for
a really quantitative, generally applicable, empirical method of
the type proposed in ref 9. Nevertheless, we show that at least
semiquantitative agreement between empirical and ab initio
results for anharmonicity factors can be obtained. This opens
the way to estimates of anharmonicity of at least moderately
complex molecular systems by employing the empirical method
of ref 9 in a somewhat modified form.

2. Determination of Anharmonicity Factors

In the following we determine the anharmonicity factors
Fannp(E,J) by the two methods outlined in refs 4 and 13. First,
we use the empirical method of ref 9 in its simplest form. E.g.,
we represent the energy levels E(ny,na,n3) = E((ny) + Ex(ny) +
E5(ny,ny,n3) of a triatomic molecule by two local mode stretching
vibrations (sl and s2) with Morse oscillator energy levels

E,(n)=hv,(n,+1/2)— (hv,)’(n,+ 1/2)°/4D,
Q2.1

and

Ey(n,) =hvy(n,+1/2) — (h vy)(n,+1/2)*/4D,
2.2)

where v and vy, are harmonic, local mode, stretching frequen-
cies, and D, and D, are effective Morse dissociation energies
of the two stretches. The local mode bending (b3) energy levels
are first represented by harmonic values

Ey(n,, ny,n3) = h vy(ny +1/2) 2.3)

with a bending frequency v, coupled to the adjacent stretching
frequencies through

vy =v,l(1 — cE,/D,)(1 — cE,/D,)*" (2.4)

where ¢ denotes some fit parameter; see below. For applications
including higher energies, the harmonic levels are replaced by
hindered rotor levels in the form

Ey(ny, ny, ny) =h vy (ns + 1/2) — B(ny + 1/2)°7(1 — 70/4)
(2.5)
at E5 < Vp and
Eq(n,, ny, ny) = (h v,)’(1 — 4/7°)/4B+ (n, + 1/2)°B
(2.6)

at E; > V, where Vo = (h vy)%/4B and B is an effective
rotational constant (in energy units). We recommend to use
B = (B1B,)"* where B, and B, are the rotational constants of
the two moieties (in energy units) linked by the bending.
The local mode frequencies vy, vy, and vp; are empirically
fitted in such a way that the experimental fundamentals
E(1,0,0), E(0,1,0), and E(0,0,1) are exactly reproduced. The
Morse dissociation energies D, and D, are first determined
from the thermodynamic values AH,° and the zero point
energies before (E.) and after dissociation (E.)*? (i.e., D; =
AHy° + E, — E;). If special features of the potential are
known, which differ from “normal” Morse potentials, these
may be represented by modification of D; and D,, see below.
Energy levels in the dissociation continuum are omitted.* The
empirical form of eq 2.4 was suggested on the basis of an
analysis of dissociation/recombination rate coefficients. Equa-
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Figure 1. Number of vibrational states W(E,J = 0) for HO,, see text
(curves from bottom to top: dotted line, harmonic oscillator Whitten—
Rabinovitch expression; bold full line, optimum anharmonic empirical
model (¢ = 1, hindered rotor bend, modified D;); dashed line, optimum
fit to quantum-corrected phase space volume on corrected XXZLG ab
initio potential*!” (step functions at left: quantized XXZLG and
quantized optimum empirical results); lower light line, anharmonic
empirical model (¢ = 0.5, hindered rotor bend, unmodified D;); upper
light line, anharmonic empirical model (¢ = 1, hindered rotor bend,
unmodified D,); E = energy above the potential minimum).

tion 2.4 is empirical and to some extent intuitive; it, therefore,
needs checking such as given below. E.g., our application
to HO; in refs 4 and 9 suggested that the reduction of the
parameter ¢ in eq 2.4 to a value of 0.5 provided better results.
However, below we show that retaining ¢ = 1 and modifying
D, and D, is more realistic. After approximate positions of
the energy levels are determined through egs 2.1, 2.2, 2.5,
and 2.6, the number of states W(E) is obtained by state
counting. Analytical approximate representation of W(E) after
fitting to a continuous expression and differentiation with
respect to E finally leads to the density of states p(E) =
dW(E)/dE.

Second, if an analytical representation of the ab initio
potential energy surface is available, we determine the
number W(E,J) of rovibrational molecular states by quantum-
corrected Monte Carlo integration of the phase space volume.
In this case, the classical phase space volume is calculated
and then quantum-corrected by means of the Whitten—Rabinovitch
approximation® for harmonic levels such as suggested in ref
16. By comparison with filter diagonalization quantum results,
the procedure was also checked for HO; in ref 4. The phase
space integration is unique for the bound states. In the range
of dissociative states, however, some decision about the limits
of the phase space to include has to be made. The choice of
the limits in ref 13 was shown to be relatively arbitrary as
long as not too large energies E were considered. In the
simplest way, the analytical continuation of the expression
for W(E), such as derived from bound states up to the lowest
dissociation energy, was shown to be adequate. In the present
work, more complicated situations were also analyzed; see
below.

3. Anharmonicity Factors for HO,

Before a comparison with four-atom systems like H,CO
and H,0, is made, we revisit anharmonicity factors for HO,.
First, in Figure 1 we show the number of vibrational states
W(E,J = 0) for HO, such as obtained by phase space
integration with the ab initio XXZLG potential!” (after the
minor corrections for experimental fundamentals and dis-



3942 J. Phys. Chem. A, Vol. 113, No. 16, 2009

20 T T T T
.
-
1.8 P -
.
-
»
-~ - ’
5 164 - .
4 e
ui -7
u .
< - -
WE 144 P i
.
.
.
-
124 -7 b
1.0 T T T T
10000 15000 20000 25000 30000 35000

E/hccm”

Figure 2. Anharmonicity factor Fyu o(E,J = 0) for HO,, see text (curve
from bottom to top: lower line, empirical model (¢ = 1, harmonic
oscillator bend, modified D;); middle line, optimum empirical model
(¢ =5, hindered rotor bend, modified D;); upper dashed line, quantum-
corrected phase space integration results on corrected XXZLG ab initio
potential*!7).

sociation energies are applied such as described in ref 4). In
analytical form our results for W(E,J = 0) like in ref 4 are
fitted by

W(E,J=0)=[(E + hc 1345.05 cm™ ")/
he 4347.26 cm™ ' (3.1)

In applying the empirical method of ref 9, like in ref 4 we
observed that W(E,J = 0) with the parameter ¢ = 1 in eq 2.4
was reasonably well represented up to the first dissociation
energy E = Dy = hc 18960 cm™!. However, W(E.,J) was
increasingly overestimated for higher energies; see Figure 1. It
was suggested in ref 4 to cure this problem by empirically
reducing the parameter c in eq 2.4 from unity to a value of 0.5.
This procedure, however, was found to be of success only for
a limited energy range such as also illustrated in Figure 1. The
origin of this problem then was identified by inspecting the ab
initio potential. Both in the direction of the H—OO stretching
(see Figure 1 of ref 18 and of the HO—O stretching (see Figure 4
of ref 19) the potential is stiffer than that represented by a Morse
potential and shows signs of avoided crossings. For this reason,
tentatively D, = hc 18960 cm™! was assumed to correspond to
the dissociation products H + O,('A) and D, = hc 23560 cm™!
to correspond to the dissociation products HO + O('D). Thus,
keeping the parameter ¢ equal to unity, excluding all stretching
levels above the dissociation energies for H + O,(*Z) and HO
+ OCP), and representing the bend by a harmonic oscillator,
the empirical method works by far better. Apart from the
accurate positions of individual energy levels at low energies,
the derived W(E,J = 0) now agrees well with the accurate
results. Even better results, agreeing within 5% with the accurate
W(E,J = 0), are obtained when the harmonic bend is replaced
by a hindered rotor with an effective rotational constant B =
[B(O,)B(OH)]"%; see below. The comparison with W(E,J = 0)
for harmonic oscillators, calculated with the Whitten—Rabinovitch
approximation, shows the effects of anharmonicity in W(E,J =
0). One may represent this by an anharmonicity factor
Fanw(E,J). Instead, in the following we only consider Fyp, o(E,J)
which is obtained by smoothing, i.e., by representing the step
function W(E,J) in the analytical form of eq 3.1 and by
differentiating this expression with respect to the energy.

Figure 2 illustrates our results for Fyo(E,J = 0). They are
represented in analytical form by

Troe and Ushakov

F oy (E.J=0)= 1+ (E — hc 4543 cm™')/hc 30268 cm '
(3.2)

(A slightly different expression optimized for a range of J values
was presented in refs 4 and 13). The accurate results from the
XXZLG potential (corrected as mentioned above) are compared
with data from the empirical method. In the latter the use of
the effective dissociation energies D; and D, is essential. We
show results for harmonic and hindered rotor bending levels
with the effective rotational constant B = [B(O,)B(OH)]"? and
the modified D; indicated above. The agreement of the latter
results with the accurate values looks satisfactory. However, it
should be kept in mind that the empirical method in this case
required nonempirical insight into the shape of the potential
along the H—OO and HO—O stretchings. Without this modi-
fication, the overestimates of W(E,J = 0) illustrated in Figure
1 would have limited the quality of the empirical prediction of
anharmonicity.

4. Anharmonicity Factors for H,CO

Besides HO,, we have chosen the H,CO system because an
analytical representation of the ab initio potential is available?*~22
and the potential shows complexities for the larger energies that
are typical for polyatomic molecules. We have used this
potential before for classical trajectory calculations of the rate
of the reaction H + HCO — H, + CO in ref 23. We also
calculated with it dissociative lifetimes of H,CO in ref 24 in
relation to thermal dissociation and photolysis rates.>¢ In this
system the problem of the phase space boundary of dissociative
states is of some interest, because the dissociation proceeds via
complex elimination, simple bond fission, and roaming atom
mechanisms. In order to handle this situation properly, we started
classical trajectories from each phase point in the range of
dissociative states of the phase space such as demonstrated in
ref 23. Only those phase points then were included in the phase
space volume contributing to W(E,J), for which the trajectories
propagated in the direction of both positive and negative time
showed properties corresponding to bound H,CO complexes.
Apart from this detail, W(E,J) was again determined by Monte
Carlo integration of the phase space volume and subsequent
quantum-correction using the Whitten—Rabinovitch approxima-
tion; see section 2. The resulting W(E,J = 0) (divided by the
symmetry number ¢ = 2) is shown in Figure 3 and compared
with harmonic oscillator results, again obtained with the
Whitten—Rabinovitch approximation (using fundamental fre-
quencies of HyCO which introduces some anharmonicity). W(E,J
= 0) in smoothed analytical form is represented by

W(E,J=0) = [(E + hc 186.30cm™")/hc 6799.34 cm™' 15!
4.1)

The accurate numbers of states W(E,J = 0) from the quantum-
corrected phase space integration shown in Figure 3 is compared
with results from our empirical method. For the four-atom
system H,CO we represent the three stretches corresponding to
the fundamentals (2811 (s1), 1756 (s2), and 2861 cm™! (s3))
by Morse oscillators such as characterized by eq 2.1 with
dissociation energies AH,°/hc = 35970 (CO + H + H), 62260
(O + CH,), and 31040 cm™!' (H + HCO), respectively. The
three bends (1500 (b1), 1251 (b2), and 1170 cm™! (b3)), are
again coupled to the adjacent stretches. When the bends are
treated as harmonic oscillators, their levels are given by Ey,; =
h vy (ny; + 1/2)FF5 where F; = (1 — cEi/D;)**" and where E;
are the energies of the stretching vibrations s; and s;. This
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Figure 3. Number of vibrational states W(E,J = 0) for H,CO, see
text (curves from bottom to top: dotted line, harmonic oscillator
Whitten—Rabinovitch expression; lower light full line, anharmonic
empirical model (¢ = 0.5, harmonic oscillator bends, unmodified D,);
bold full line, optimum anharmonic empirical model (¢ = 1, harmonic
oscillator bends, modified D;); line with filled circles and steps at left,
quantum-corrected phase space volume on ab initio potential from ref
20; upper light full line, anharmonic empirical model (¢ = 1, harmonic
oscillator bends, unmodified D;); E = energy above the potential
minimum).

approach generalizes eqs 2.3 and 2.4. As for HO,, one observes
that the choice of ¢ = 1 leads to relatively good agreement with
the accurate results only up to the first dissociation energy. At
higher energies this choice again overestimates W(E,J = 0).
(States above the dissociation energies are not included in the
empirical determination of W(E,J = 0)). Following the experi-
ences made with HO,, see section 3, the problem would be
overcome if larger effective Morse dissociation energies would
be used. However, inspecting the ab initio potential we found
no evidence for how much the D; of the stretches might be
increased. Therefore, tentatively and by analogy to HO,, we
increased D; (corresponding to the dissociation products H +
HCO) by the energy hc 9290 cm™! of the first electronically
excited state of HCO. Support for this choice comes from a
comparison of the empirical stretching levels with spectroscopic
levels and W(E,J = 0) from experimental Dunham coefficients?’ 3
such as derived for the low energy range (vibrational levels up
to about hc 12000 cm™!). Representing the experimental
H—COH stretching levels in the form of Morse levels, these
studies indeed result in larger effective values of D; than
obtained from the AH,° given above. With Dj increased by hc
9290 cm™! and ¢ = 1, the empirical method then gives W(E,J
= 0), which is in good agreement with the quantum-corrected
phase space integration results; see Figure 3.

Anharmonicity factors Fy ,(E,J = 0) are illustrated in Figure
4. They are represented analytically by

Foyn p(E.J=0) =1+ [(E = hc 7017cm™")/hc 36419 cm™]**
(4.2)

The comparison of Fyu,(E,J = 0) from the phase space
integration and from the described modified empirical model
appears quite satisfactory.

We have also investigated rotational dependences of the
anharmonicity factors Fun,(E,J). First, we have verified that
the effect of rotations on harmonic numbers and densities of
states indeed can very well be described by the method of
rotational factors outlined in refs 10—12 (approximately rep-
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Figure 4. Anharmonicity factor Fy (E,J = 0) for H,CO, see text
(curves from bottom to top: lower light line, empirical model (¢ =
0.5, harmonic oscillator bends, unmodified D;); dashed line with filled
squares, quantum-corrected phase space integration on ab initio potential
from ref 20; bold full line: optimum empirical model (¢ = 1, harmonic
oscillator bends, modified D;); upper light line, empirical model (¢ =
1, harmonic oscillator bends, unmodified D,); E energy above the
potential minimum).
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Figure 5. Anharmonicity factor Fyu,(E,J = 20) for H,CO (filled

circles, quantum-corrected phase space integration on ab initio potential;

full line, phase space results for J = 0, see Figure 4; E = energy above

the potential minimum).

resenting H,CO by a prolate symmetric top). Second, we have
compared Fyu o(E,J) with Fyn(EJ = 0) in the phase space
integration results. Figures 5 and 6 show the results for J = 20
and 50, respectively. One observes that the rotational effects of
Funnp(E,J) are only small such that Fyu,(E,J) can well be
approximated by Fyu o(E,J = 0). The deviations appear negli-
gible for practical applications.

5. Anharmonicity Factors for H,O,

H,0, was chosen as the second four-atom system to be
analyzed in the present work. Again an accurate ab initio
calculation of the potential energy surface®! and suitable
analytical representations of the potential®'*? are available. This
system shows the complication of a hindered rotor/torsion
around the central O—O bond which is relevant already at low
energies. In order to separate the high-energy anharmonicities
considered so far from the low-energy anharmonicity of this
torsion, several alternative procedures may be chosen. First, one
may represent the reference numbers and densities of states by
the Whitten—Rabinovitch approximation with harmonic tor-
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Figure 7. Number of vibrational states W(E,J = 0) for H,O,, see text
(curves from bottom to top: dotted line, reference Whitten—Rabinovitch
expression (free rotor torsion, see text); filled circles and step function,
quantum-corrected phase space volume on ab initio potential from ref
31; dashed line, analytical fit to the phase space results; full line,
empirical model (hindered rotor torsional levels, ¢ = 1, hindered rotor
bends, unmodified D;); E = energy above the potential minimum).

o

sional levels corresponding to the fundamental torsional fre-
quency. Second, one may employ the Whitten—Rabinovitch
approximation including a free rotor torsion.!?® Third, one may
convolute the correct hindered rotor/torsion density of states
with the Whitten—Rabinovitch expression for the number of
harmonic oscillator levels of the remaining modes. For simplic-
ity, here we have chosen the second possibility to represent
reference numbers and densities of states relative to which
anharmonic values are expressed. Analyzing the torsional
levels,?' the best corresponding free rotor number of levels is
obtained when the effective rotational constant is chosen as twice
the rotational constant of OH. Working with the corresponding
reference Whitten—Rabinovitch expression for W(E,J = 0), one
observes an overestimate of W(E,J = 0) at low energies. This
is of no relevance here, however.

Figure 7 shows our quantum-corrected Monte Carlo integra-
tion results of the phase space volume. The calculated W(E.J
= 0) are analytically represented by

W(E,J=0) = [(E + hc 606.92 cm™)/hc 5520.91 cm™']"'®
(5.1)

At energies above hc 15000 cm™! the calculated W(E,J = 0)
exceeds the described Whitten—Rabinovitch reference results.
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Figure 8. Anharmonicity factor Fy, ,(E,J = 0) for H,O, (dashed line,
quantum-corrected phase space integration on ab initio potential from
ref 31; full line, empirical model (hindered rotor torsion, ¢ = 1, hindered
rotor bends, unmodified D;); E = energy above the potential minimum).

Without further considering the artifacts of the reference results
at lower energies, we only focus attention on the anharmonicity
at larger energies.

The phase space results in Figure 7 are compared with results
from our empirical method. In this case, the three stretches are
treated again as Morse oscillators, the two bends are coupled
to the adjacent stretches through eq 2.4, and they are treated as
hindered rotors through eqs 2.5 and 2.6 with B = B(OH). The
torsion finally is treated as a one-dimensional hindered rotor
whose torsional frequency through eq 2.4 is coupled to the
adjacent O—O and O—H stretches. Without further modifying
the effective dissociation energy of the O—O stretch, the
agreement of the empirical and the phase space integration
results is very good such as shown in Figure 7. This agreement
appears somewhat unexpected, because the potential along the
0O—O0 bond at large bond extensions has a “reef”.’'*> However,
raising the effective dissociation energy by the energy of the
first electronically excited state of OH analogous to the
procedure empirically applied for HO, and H,CO would not
have led to noticeable modifications of the results.

Figure 8 shows the anharmonicity factors Fyu (E.J = 0).
They are not given for low energies, because here the free-
rotor Whitten—Rabinovitch reference number of states is
oversimplified. Therefore, only above about Ac 15000 cm™! the
results become meaningful. Here, they approach an analytical
expression of the form

F oy o(E. J=0)=0.693 +2.47y + [6.11y” +0.484]"*
(5.2)

with y = (E — hc 21000 cm™')/hc 20000 cm™!. The results
from our empirical method without modification of the dis-
sociation energies nearly agree with the phase space integration
results.

6. Conclusions

The present quantum-corrected Monte Carlo integration of
the phase space volumes on ab initio potentials for HO,, H,CO,
and H,0, illustrates the increasing contribution of anharmonicity
to vibrational numbers and densities of states when the energy
increases. On the other hand, there are only small rotational
dependences of the anharmonicity. As long as complete and
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accurate potentials are not available for larger molecules, one
may try to specify anharmonicity effects for larger molecules
by empirical models. One such model is the one described here,
slightly modifying the original version from ref 9. However,
because of its empirical character, it needs comparisons with
benchmark calculations such as given in the present work. We
found that the original model works reasonably well up to the
first dissociation energy. However, it overestimates the anhar-
monicity at larger energies. Empirically using larger effective
Morse dissociation energies, the performance of the empirical
model could be markedly improved. However, this modification
requires at least some nonempirical insight into the potential,
either from ab initio calculations or from spectroscopic observa-
tions such as Dunham parameters. Generalizing such modifica-
tions, one may proceed and employ the empirical model for
estimates of high-energy anharmonicity effects in larger mol-
ecules. We have done preliminary calculations of this type and
found that the calculational effort up to large molecular sizes
is still tolerable. However, such calculations so far could not
be checked against results based on ab initio potentials.
Despite the satisfactory performance of the described empiri-
cal model, it is clear that it cannot be accurate. However, in
view of the need for realistic estimates of anharmonicity effects
in statistical unimolecular rate theories, the limitations of our
approach may appear tolerable for practical applications.
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